toán lớp 4 trang 117 luyện tập

Lựa lựa chọn câu nhằm coi lời nói giải nhanh chóng hơn

Bài 1

Bạn đang xem: toán lớp 4 trang 117 luyện tập

Video chỉ dẫn giải

Quy đồng khuôn mẫu số những phân số:

a) \( \displaystyle{1 \over 6}\) và \( \displaystyle{4 \over 5}\) ;      \( \displaystyle{{11} \over {49}}\) và \( \displaystyle{8 \over 7}\);       \( \displaystyle{{12} \over 5}\) và \( \displaystyle{5 \over 9}\);

b) \( \displaystyle{5 \over 9}\) và \( \displaystyle{7 \over {36}}\)  ;   \( \displaystyle{{47} \over {100}}\) và \( \displaystyle{{17} \over {25}}\) ;    \( \displaystyle{4 \over 9}\) và \( \displaystyle{5 \over 8}\).

Phương pháp giải:

Khi quy đồng khuôn mẫu số nhị phân số rất có thể thực hiện như sau:

- Lấy tử số và khuôn mẫu số của phân số loại nhất nhân với khuôn mẫu số của phân số loại nhị.

- Lấy tử số và khuôn mẫu số của phân số loại nhị nhân với khuôn mẫu số của phân số loại nhất.

Lời giải chi tiết:

a) \( \displaystyle{1 \over 6} = {{1 \times 5} \over {6 \times 5}} = {5 \over {30}};\,\,\,\,{4 \over 5} = {{4 \times 6} \over {5 \times 6}} = {{24} \over {30}}\)

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{1 \over 6}\) và \( \displaystyle{4 \over 5}\) được nhị phân số \( \displaystyle{5 \over {30}}\) và \( \displaystyle {{24} \over {30}}\).

+) Giữ vẹn toàn phân số \( \displaystyle{{11} \over {49}}\) \(\displaystyle;\,\,\,\,{8 \over 7} = {{8 \times 7} \over {7 \times 7}} = {{56} \over {49}}\)

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{{11} \over {49}}\) và \( \displaystyle{8 \over 7}\) được nhị phân số \( \displaystyle{{11} \over {49}}\) và \( \displaystyle {{56} \over {49}}\).

+) \( \displaystyle{{12} \over 5} = {{12 \times 9} \over {5 \times 9}} = {{108} \over {45}};\) \( \displaystyle\,\,\,\,{5 \over 9} = {{5 \times 5} \over {9 \times 5}} = {{25} \over {45}}\)

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{{12} \over 5}\) và \( \displaystyle{5 \over 9} \) được nhị phân số \( \displaystyle{{108} \over {45}}\) và \( \displaystyle {{25} \over {45}}\).

b) \( \displaystyle{5 \over 9} = {{5 \times 4} \over {9 \times 4}} = {{20} \over {36}};\)   giữ vẹn toàn phân số \( \displaystyle{7 \over {36}}\).

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{5 \over 9} \) và \( \displaystyle{7 \over {36}}\) được nhị phân số \( \displaystyle {{20} \over {36}}\) và \( \displaystyle {7 \over {36}}\).

+) Giữ vẹn toàn phân số\( \displaystyle{{47} \over {100}};\) \( \displaystyle \,\,\,\,{{17} \over {25}} = {{17 \times 4} \over {25 \times 4}} = {{68} \over {100}}\).

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{{47} \over {100}}\) và \( \displaystyle{{17} \over {25}}\) được nhị phân số \( \displaystyle{{47} \over {100}}\) và \( \displaystyle  {{68} \over {100}}\).

+) \( \displaystyle{4 \over 9} = {{4 \times 8} \over {9 \times 8}} = {{32} \over {72}};\,\,\,\,\,{5 \over 8} = {{5 \times 9} \over {8 \times 9}} = {{45} \over {72}}\)

Vậy quy đồng khuôn mẫu số nhị phân số \( \displaystyle{4 \over 9}\) và \( \displaystyle{5 \over 8}\) được nhị phân số \( \displaystyle {{32} \over {72}}\) và \( \displaystyle {{45} \over {72}}\).

Quảng cáo

Bài 2

Video chỉ dẫn giải

a) Hãy viết \( \displaystyle{3 \over 5}\) và \(2\) trở nên nhị phân số đều phải có khuôn mẫu số là \(5\).

b) Hãy ghi chép \(5\) và \( \displaystyle{5 \over 9}\) trở nên nhị phân số đều phải có khuôn mẫu số là \(9;\) là \(18\). 

Phương pháp giải:

a) Viết \(2\) bên dưới dạng phân số đem khuôn mẫu số là \(1\), tiếp sau đó nhân cả tử và khuôn mẫu của phân số này với 5.

b) Viết \(5\) bên dưới dạng phân số đem khuôn mẫu số là \(1\), tiếp sau đó quy đồng khuôn mẫu số thứu tự là 9, 18.

Lời giải chi tiết:

a) Giữ vẹn toàn phân số \( \displaystyle{3 \over 5}\);         \( \displaystyle2 = {2 \over 1} = {{2 \times 5} \over {1 \times 5}} = {{10} \over 5}\)

b) \( \displaystyle5 = {5 \over 1} = {{5 \times 9} \over {1 \times 9}} = {{45} \over 9}\);         giữ vẹn toàn phân số \( \displaystyle{5 \over 9}\).

\( \displaystyle5 = {5 \over 1} = {{5 \times 18} \over {1 \times 18}} = {{90} \over {18}};\)     \( \displaystyle\,\,\,{5 \over 9} = {{5 \times 2} \over {9 \times 2}} = {{10} \over {18}}\).

Bài 3

Video chỉ dẫn giải

Xem thêm: đặt tính rồi tính lớp 5

Quy đồng khuôn mẫu số những phân số (theo mẫu) :

Mẫu: Quy đồng khuôn mẫu số những phân số: \( \displaystyle{1 \over 2};{1 \over 3}\) và \( \displaystyle{2 \over 5}\).

Ta đem : 

\( \displaystyle\eqalign{& {1 \over 2} = {{1 \times 3 \times 5} \over {2 \times 3 \times 5}} = {{15} \over {30}};  \cr& {1 \over 3} = {{1 \times 2 \times 5} \over {3 \times 2 \times 5}} = {{10} \over {30}}; \cr & {2 \over 5} = {{2 \times 2 \times 3} \over {5 \times 2 \times 3}} = {{12} \over {30}}. \cr} \)

Vậy quy đồng khuôn mẫu số những phân số \( \displaystyle{1 \over 2};{1 \over 3};{3 \over 5}\) được \( \displaystyle{{15} \over {30}};{{10} \over {30}};{{12} \over {30}}.\)

a) \( \displaystyle{1 \over 3};{1 \over 4}\) và \( \displaystyle{4 \over 5}\);               b) \( \displaystyle{1 \over 2};{2 \over 3}\) và \( \displaystyle{3 \over 4}\)

Phương pháp giải:

Khi quy đồng khuôn mẫu số tía phân số rất có thể thực hiện như sau:

- Lấy tử số và khuôn mẫu số của phân số loại nhất nhân với tích của khuôn mẫu số của phân số loại nhị và khuôn mẫu số của phân số loại tía.

- Lấy tử số và khuôn mẫu số của phân số loại nhị nhân với tích của khuôn mẫu số của phân số loại nhất và khuôn mẫu số của phân số loại tía.

- Lấy tử số và khuôn mẫu số của phân số loại tía nhân với tích của khuôn mẫu số của phân số loại nhất và khuôn mẫu số của phân số loại nhị. 

Lời giải chi tiết:

a) 

\( \displaystyle\eqalign{
& {1 \over 3} = {{1 \times 4 \times 5} \over {3 \times 4 \times 5}} = {{20} \over {60}};  
\cr & {1 \over 4} = {{1 \times 3 \times 5} \over {4 \times 3 \times 5}} = {{15} \over {60}}; \cr 
& {4 \over 5} = {{4 \times 3 \times 4} \over {5 \times 3 \times 4}} = {{48} \over {60}}. \cr} \)

Vậy quy đồng khuôn mẫu số những phân số \( \displaystyle{1 \over 3};{1 \over 4};{4 \over 5}\) được \( \displaystyle{{20} \over {60}};{{15} \over {60}};{{48} \over {60}}.\)

b)  

\( \displaystyle\eqalign{
& {1 \over 2} = {{1 \times 3 \times 4} \over {2 \times 3 \times 4}} = {{12} \over {24}}; 
\cr & {2 \over 3} = {{2 \times 2 \times 4} \over {3 \times 2 \times 4}} = {{16} \over {24}}; \cr 
& {3 \over 4} = {{3 \times 2 \times 3} \over {4 \times 2 \times 3}} = {{18} \over {24}}. \cr} \)

Vậy quy đồng khuôn mẫu số những phân số \( \displaystyle {1 \over 2};{2 \over 3};{3 \over 4}\) được \( \displaystyle{{12} \over {24}};{{16} \over {24}};{{18} \over {24}}.\)

Hoặc :

\( \displaystyle\eqalign{
& {1 \over 2} = {{1 \times 6} \over {2 \times 6}} = {{6} \over {12}}; 
\cr & {2 \over 3} = {{2 \times  4} \over {3 \times 4}} = {{8} \over {12}}; \cr 
& {3 \over 4} = {{3 \times 3} \over {4 \times 3}} = {{9} \over {12}}. \cr} \)

Vậy quy đồng khuôn mẫu số những phân số \( \displaystyle {1 \over 2};{2 \over 3};{3 \over 4}\) được \( \displaystyle{{6} \over {12}};{{8} \over {12}};{{9} \over {12}}.\)

Bài 4

Video chỉ dẫn giải

Viết những phân số thứu tự bằng \( \displaystyle{7 \over {12}};{{23} \over {30}}\) và đem khuôn mẫu số cộng đồng là \(60\).

Phương pháp giải:

Ta có: \(60 : 12 = 5\) và \(60:30 = 2 \). Do cơ tao ghi chép phân số \(\dfrac{7}{12} \) trở nên phân số đem khuôn mẫu số là \(60\) bằng phương pháp nhân cả tử số và khuôn mẫu số với \(5\); ghi chép phân số \(\dfrac{23}{30}\) thành phân số đem khuôn mẫu số là \(60\) bằng phương pháp nhân cả tử số và khuôn mẫu số với \(2\).

Lời giải chi tiết:

\( \displaystyle\eqalign{
& {7 \over {12}} = {{7 \times 5} \over {12 \times 5}} = {{35} \over {60}}; \cr 
& {{23} \over {30}} = {{23 \times 2} \over {30 \times 2}} = {{46} \over {60}}. \cr} \)

Bài 5

Video chỉ dẫn giải

Tính (theo mẫu) :

a) \( \displaystyle{{15 \times 7} \over {30 \times 11}};\)                 b) \( \displaystyle{{4 \times 5 \times 6} \over {12 \times 15 \times 9}};\)               c)\( \displaystyle{{6 \times 8 \times 11} \over {33 \times 16}}\)

Mẫu :  \( \displaystyle{{15 \times 7} \over {30 \times 11}} = {{\not{15} \times 7} \over {\not{15} \times 2 \times 11}} = {7 \over {22}}.\)

Phương pháp giải:

Phân tích tử số và khuôn mẫu số kết quả của những quá số, tiếp sau đó thứu tự phân chia nhẩm tích ở tử số và tích ở khuôn mẫu số cho những quá số cộng đồng.

Lời giải chi tiết:

Xem thêm: make up with là gì

b) \( \displaystyle{{4 \times 5 \times 6} \over {12 \times 15 \times 9}} = {{\not{4} \times \not{5} \times \not{3} \times 2} \over {\not{4} \times \not{3} \times 3 \times \not{5} \times 9}}\) \(\displaystyle = {2 \over {27}}.\)

c) \( \displaystyle{{6 \times 8 \times 11} \over {33 \times 16}} = {{\not{2} \times \not{3} \times \not{8} \times \not{11}} \over {\not{3} \times \not{11} \times \not{8} \times \not{2}}} = 1.\)

Loigiaihay.com