tâm đường tròn nội tiếp

Bách khoa toàn thư hé Wikipedia

Một tam giác với đàng tròn trĩnh nội tiếp sở hữu tâm I, những đàng tròn trĩnh bàng tiếp sở hữu những tâm (JA,JB,JC), những phân giác vô và phân giác ngoài.

Trong hình học tập, đường tròn trĩnh nội tiếp của một tam giác là đàng tròn trĩnh lớn số 1 nằm trong tam giác; nó xúc tiếp đối với tất cả tía cạnh của tam giác. Tâm của đàng tròn trĩnh nội tiếp là phó điểm của tía đàng phân giác vô.[1]

Bạn đang xem: tâm đường tròn nội tiếp

Một đường tròn trĩnh bàng tiếp của tam giác là một trong những đàng tròn trĩnh ở ngoài tam giác, xúc tiếp với cùng 1 cạnh của tam giác và với phần kéo dãn của nhị cạnh sót lại.[2] Mọi tam giác đều phải có 3 đàng tròn trĩnh bàng tiếp phân biệt, từng dòng sản phẩm xúc tiếp với cùng 1 cạnh. Tâm của một đàng tròn trĩnh bàng tiếp là phó điểm của đàng phân giác vô của một góc với những đàng phân giác ngoài của nhị góc sót lại.[1]

Công thức cung cấp kính[sửa | sửa mã nguồn]

Xét tam giác ABC có tính nhiều năm những cạnh đối lập 3 góc A, B, Ca, b, c, diện tích S S; r, ra, rb, rc là nửa đường kính đàng tròn trĩnh nội tiếp và những đàng tròn trĩnh bàng ứng cứu với những cạnh a, b, c. Đặt . Khi cơ tao sở hữu một trong những hệ thức cơ bản:

Xem thêm: điểm chuẩn đh giao thông vận tải

Xem thêm: taj mahal is a giant mausoleum of white marble in agra india. it is considered to be an outstanding

Một số đặc thù của những tâm[sửa | sửa mã nguồn]

  • Tâm của tứ đàng tròn trĩnh này cơ hội đều những cạnh của tam giác
  • Đường tròn trĩnh nội tiếp và những đàng tròn trĩnh bàng tiếp đều xúc tiếp với đàng tròn trĩnh chín điểm. Tiếp điểm của đàng tròn trĩnh nội tiếp với đường tròn trĩnh chín điểm gọi là vấn đề Feuerbach.
  • Các tâm của đàng tròn trĩnh nội tiếp và những đàng tròn trĩnh bàng tiếp lập trở thành một khối hệ thống trực phó sở hữu đàng tròn trĩnh chín điểm đó là đàng tròn trĩnh nước ngoài tiếp của tam giác.
  • Cho tam giác ABC, đàng tròn trĩnh nội tiếp xúc tiếp với tía cạnh tam giác bên trên tía điểm A', B', C' Khi cơ tía đường thẳng liền mạch AA', BB'. CC' đồng quy. Điểm này gọi là vấn đề Gergonne của tam giác[3]
  • Cho tam giác ABC, đàng tròn trĩnh bàng ứng cứu với cạnh BC, CA, AB theo thứ tự xúc tiếp với những cạnh này bên trên A', B', C' Khi cơ tía đường thẳng liền mạch AA', BB'. CC' đồng quy. Điểm này gọi là vấn đề Nagel của tam giác ABC.

Biểu thức tọa độ[sửa | sửa mã nguồn]

Trên mặt mày bằng tọa chừng Đề-các, nếu như một tam giác sở hữu 3 đỉnh sở hữu tọa chừng là , , ứng với chừng nhiều năm những cạnh đối lập là , , thì tâm đường tròn nội tiếp tam giác cơ sở hữu tọa chừng là:

.

ở cơ

Xem thêm[sửa | sửa mã nguồn]

  • Tiếp tuyến
  • Điểm Feuerbach
  • Điểm Gergonne
  • Điểm Nagel

Chú thích[sửa | sửa mã nguồn]

Tham khảo[sửa | sửa mã nguồn]

  • Altshiller-Court, Nathan (1925), College Geometry: An Introduction vĩ đại the Modern Geometry of the Triangle and the Circle (ấn phiên bản 2), New York: Barnes & Noble, LCCN 52013504
  • Kay, David C. (1969), College Geometry, New York: Holt, Rinehart and Winston, LCCN 69012075
  • Kimberling, Clark (1998). “Triangle Centers and Central Triangles”. Congressus Numerantium (129): i–xxv, 1–295.
  • Kiss, Sándor (2006). “The Orthic-of-Intouch and Intouch-of-Orthic Triangles”. Forum Geometricorum (6): 171–177.

Liên kết ngoài[sửa | sửa mã nguồn]

  • Derivation of formula for radius of incircle of a triangle
  • Weisstein, Eric W., "Incircle" kể từ MathWorld.
  • Triangle incenter
  • An interactive Java applet for the incenter Lưu trữ 2015-11-05 bên trên Wayback Machine